One-shot segmentation of brain tissues is typically a dual-model iterative learning: a registration model (reg-model) warps a carefully-labeled atlas onto unlabeled images to initialize their pseudo masks for training a segmentation model (seg-model); the seg-model revises the pseudo masks to enhance the reg-model for a better warping in the next iteration. However, there is a key weakness in such dual-model iteration that the spatial misalignment inevitably caused by the reg-model could misguide the seg-model, which makes it converge on an inferior segmentation performance eventually. In this paper, we propose a novel image-aligned style transformation to reinforce the dual-model iterative learning for robust one-shot segmentation of brain tissues. Specifically, we first utilize the reg-model to warp the atlas onto an unlabeled image, and then employ the Fourier-based amplitude exchange with perturbation to transplant the style of the unlabeled image into the aligned atlas. This allows the subsequent seg-model to learn on the aligned and style-transferred copies of the atlas instead of unlabeled images, which naturally guarantees the correct spatial correspondence of an image-mask training pair, without sacrificing the diversity of intensity patterns carried by the unlabeled images. Furthermore, we introduce a feature-aware content consistency in addition to the image-level similarity to constrain the reg-model for a promising initialization, which avoids the collapse of image-aligned style transformation in the first iteration. Experimental results on two public datasets demonstrate 1) a competitive segmentation performance of our method compared to the fully-supervised method, and 2) a superior performance over other state-of-the-art with an increase of average Dice by up to 4.67%. The source code is available at: https://github.com/JinxLv/One-shot-segmentation-via-IST.
translated by 谷歌翻译
在各个领域(例如政治,健康和娱乐)中的真实和虚假新闻每天都通过在线社交媒体传播,需要对多个领域进行虚假新闻检测。其中,在政治和健康等特定领域中的虚假新闻对现实世界产生了更严重的潜在负面影响(例如,由Covid-19的错误信息引导的流行病)。先前的研究着重于多域假新闻检测,同样采矿和建模域之间的相关性。但是,这些多域方法遇到了SEESAW问题:某些域的性能通常会以损害其他域的性能而改善,这可能导致在特定领域的表现不满意。为了解决这个问题,我们建议一个用于假新闻检测(DITFEND)的域和实例级传输框架,这可以改善特定目标域的性能。为了传递粗粒域级知识,我们从元学习的角度训练了所有域数据的通用模型。为了传输细粒度的实例级知识并将一般模型调整到目标域,我们在目标域上训练语言模型,以评估每个数据实例在源域中的可传递性,并重新赢得每个实例的贡献。两个数据集上的离线实验证明了Ditfend的有效性。在线实验表明,在现实世界中,Ditfend对基本模型带来了更多改进。
translated by 谷歌翻译
假新闻的广泛传播越来越威胁到个人和社会。在单个领域(例如政治)上自动假新闻发现已做出了巨大的努力。但是,相关性通常存在于多个新闻领域,因此有望同时检测多个域的假新闻。基于我们的分析,我们在多域假新闻检测中提出了两个挑战:1)域转移,是由域,情感,样式等领域之间的差异引起的。世界分类仅输出一个单个领域标签,而不管新闻文章的主题多样性如何。在本文中,我们提出了一个记忆引导的多视图多域假新闻检测框架(M $^3 $ fend),以应对这两个挑战。我们从多视图的角度对新闻作品进行建模,包括语义,情感和风格。具体而言,我们建议一个域存储库来丰富域信息,该信息可以根据可见的新闻和模型域特征来发现潜在的域标签。然后,以丰富的域信息为输入,域适配器可以从各个域中的新闻的多个视图中适应汇总歧视性信息。对英语和中文数据集进行的大量离线实验证明了M $^3 $ fend的有效性,在线测试在实践中验证了其优势。我们的代码可在https://github.com/ictmcg/m3fend上找到。
translated by 谷歌翻译
在过去几年中,社交媒体上传播的错误消息激增,并导致了现实世界中的多种威胁。尽管有关于特定领域的虚假新闻(例如政治或医疗保健)的研究,但比较跨领域的虚假新闻几乎没有工作。在本文中,我们调查了2009年至2019年中国最大的Twitter式社交媒体平台的微博上的九个领域的虚假新闻。新收集的数据包含44,728个帖子,由40,215个用户发布,并重新发布了。 340万次。基于多域数据集的分布和传播,我们观察到,在诸如健康和医学之类的日常生活的领域中,虚假的消息比政治等其他领域的帖子更有效,但有效地传播的帖子较少,而政治虚假新闻具有最有效的扩散能力。关于微博上广泛散布的虚假新闻帖子与某些类型的用户(按性别,年龄等。此外,这些帖子都引起了重新播放的强烈情绪,并随着False-News启动器的积极参与而进一步扩散。我们的发现有可能在可疑新闻发现,真实性预测以及显示和解释中帮助设计错误的新闻检测系统。微博上的发现与现有作品的发现表明了细微的模式,这表明需要对来自不同平台,国家或语言的数据进行更多研究,以解决全球错误新闻。代码和新的匿名数据集可在https://github.com/ictmcg/characterizing-weibo-multi-domain-false-news上找到。
translated by 谷歌翻译
已经过了事实检查的虚假声明仍可在社交媒体上传播。为了缓解他们的持续传播,检测先前的事实检查的索赔是必不可少的。鉴于索赔,现有的工作侧重于提供由BM25检索的重新登录候选事实检查文章(FC-Temericles)进行检测的证据。然而,这些性能可能受到限制,因为它们忽略了FC-asticles的以下特征:(1)通常引用权利要求以描述所检查的事件,除了语义之外提供词法信息; (2)介绍或揭露索赔的句子模板在文章中是常见的,提供模式信息。忽略两个方面的模型仅利用语义相关性,并且可能被描述类似但无关事件的句子误导。在本文中,我们提出了一种新颖的Reranker,MTM(用于匹配的内存增强的变压器)来使用与事件(词汇和语义)和模式信息选择的关键句子进行排序FC-Tressiple。对于活动信息,我们提出了一个胭脂引导的变压器,胭脂了胭脂回归。对于模式信息,我们生成用于与句子匹配的模式向量。通过定影事件和模式信息,我们选择关键句子来表示文章,然后使用索赔,密钥句子和模式检查文章事实是否检查给定的索赔。两个真实数据集的实验表明MTM优于现有方法。人类评估证明,MTM可以捕获用于解释的关键句子。代码和数据集是https://github.com/ictmcg/mtm。
translated by 谷歌翻译
脑MRI图像的登记需要解决变形领域,这对于对准复杂的脑组织,例如皮质核等,这是极其困难的现有努力,该努力在具有微小运动的中间子场中分解目标变形领域,即逐步登记阶段或较低的分辨率,即全尺寸变形场的粗析估计。在本文中,我们认为这些努力不是相互排斥的,并为普通和粗良好的方式同时提出统一的脑MRI登记统一框架。具体地,在双编码器U-Net上构建,定制移动的MRI对被编码和解码成从粗略到精细的多尺度变形子字段。每个解码块包含两个提出的新颖模块:i)在变形场积分(DFI)中,计算单个集成子字段,翘曲,其等同于来自所有先前解码块的子字段逐渐翘曲,并且II)非刚性特征融合(NFF),固定移动对的特征由DFI集成子场对齐,然后融合以预测更精细的子场。利用DFI和NFF,目标变形字段被修改为多尺度子场,其中较粗糙的字段缓解了更精细的一个和更精细的字段的估计,以便构成以前粗糙的较粗糙的那些错位。私人和公共数据集的广泛和全面的实验结果展示了脑MRI图像的优越的登记性能,仅限于逐步登记和粗略估计,平均骰子的粗略估计数量在最多8%上升。
translated by 谷歌翻译
传统的工业推荐人通常在单一的业务领域培训,然后为此域名服务。但是,在大型商业平台中,通常情况下,推荐人需要为多个业务域提供点击率(CTR)预测。不同的域具有重叠的用户组和项目。因此,存在共性。由于特定用户组具有差异,并且用户行为可能在各种商业域中改变,因此还存在区别。区别导致特定于域的数据分布,使单个共享模型很难在所有域上运行良好。要学习一个有效且高效的CTR模型,可以同时处理多个域,我们呈现明星拓扑自适应推荐(Star)。具体而言,STAR具有星形拓扑,由共享中心参数和特定于域的参数组成。共享参数用于学习所有域的共性,以及域特定参数捕获域区分以进行更精细的预测。给定来自不同商业域的请求,Star可以根据域特征调节其参数。生产数据的实验结果验证了所提出的明星模型的优越性。自2020年以来,STAR已部署在阿里巴巴的显示广告系统中,从RPM获得平均8.0%的改进和6.0%(每米尔勒收入)。
translated by 谷歌翻译
A further understanding of cause and effect within observational data is critical across many domains, such as economics, health care, public policy, web mining, online advertising, and marketing campaigns. Although significant advances have been made to overcome the challenges in causal effect estimation with observational data, such as missing counterfactual outcomes and selection bias between treatment and control groups, the existing methods mainly focus on source-specific and stationary observational data. Such learning strategies assume that all observational data are already available during the training phase and from only one source. This practical concern of accessibility is ubiquitous in various academic and industrial applications. That's what it boiled down to: in the era of big data, we face new challenges in causal inference with observational data, i.e., the extensibility for incrementally available observational data, the adaptability for extra domain adaptation problem except for the imbalance between treatment and control groups, and the accessibility for an enormous amount of data. In this position paper, we formally define the problem of continual treatment effect estimation, describe its research challenges, and then present possible solutions to this problem. Moreover, we will discuss future research directions on this topic.
translated by 谷歌翻译
The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译